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Recent advances in single-cell profiling and artificial intelligence have enabled the construction of virtual cells, computational entities

that simulate cellular states and responses with unprecedented resolution. Initiatives such as the Virtual Cell World Challenge highligh
t the potential of large Al models to move beyond annotation toward predictive and generative simulations. Yet, the next frontier lies i
n scaling from virtual cells to virtual organs, where thousands of cell types interact across spatial, temporal, and biophysical dimension
s. This transition exposes major challenges: incomplete cellular atlases, limited integration of spatial and longitudinal data, difficulties
in cross-scale modeling, and the lack of robust validation frameworks. Addressing these obstacles requires embedding biological priors
into foundation models, developing multi-modal integration strategies, and adopting graph-based and hybrid mechanistic-statistical a
pproaches. The emergence of digital twins--organ- or patient-specific replicas--illustrates how virtual organ models can inform drug dis
covery, predict toxicity, and guide precision medicine. Ultimately, the trajectory from virtual cells to virtual organs points toward the v
ision of a virtual human, enabling in silico experimentation at scale. Realizing this goal will demand not only technical breakthroughs b
ut also collaborative validation, ensuring that medical Al navigates these deep waters toward safe and transformative clinical applicati

on.

Virtual Cells: From Single-cell Data to C
omputational Entities

The convergence of artificial intelligence and biomedicine ha
s entered a transformative stage. In the past decade, single-c
ell profiling technologies have unveiled the molecular hetero
geneity of tissues at unprecedented resolution, producing m
ulti-omic atlases that serve as the foundation for computatio
nal modeling®3. Coupled with the rapid advances in deep lear
ning and the emergence of large foundation models, these d
atasets have given rise to the concept of virtual cells*®: comp
utational entities that simulate cellular identity, dynamics, an
d responses to perturbations.

While the idea of a virtual cell was once aspirational, it is no
w being materialized through international initiatives such as
the Virtual Cell Challenge, which has become a crucible for
benchmarking algorithms, and stress-testing predictive mode
Is*”. These competitions demonstrate that Al can generalize
beyond descriptive annotation, toward generative prediction
s of how cells transition, differentiate, or respond to pharma
cological interventions.

The Deep-water Challenge: From Virtu
al Cells to Virtual Organs

Biology is not organized around isolated cells but around org
ans and systems, where thousands of cell types interact withi
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n spatial and temporal frameworks®°. Moving from virtual ce
IIs to virtual organs is therefore the next frontier for medical
Al. The complexity arises not simply from the sheer number
of cells, but from the emergent properties of tissues: spatial
architectures that scaffold function, dynamic signaling that re
gulates adaptation, and biophysical forces that shape physiol
ogy.

From the perspective of single-cell analysis, several limitation
s become evident. Current atlases remain incomplete and bia
sed, often emphasizing immune or malignant populations wh
ile underrepresenting stromal, neuronal, or vascular cells, an
d unevenly sampling across health and disease®. Spatial and t
emporal dimensions also remain bottlenecks. Although spati
al transcriptomics now enables subcellular mapping, and lon
gitudinal profiling captures developmental or pathological pr
ogression, integrating these dynamic modalities into coheren
t organ-level simulations is still far from solved. More funda
mentally, cross-scale integration is formidable: molecular int
eractions must be reconciled with tissue biomechanics, elect
rophysiological networks, and endocrine feedback loops. Vali
dation adds another layer of complexity; perturbational assa
ys that are routine at single-cell resolution cannot be applied
to entire organs, and surrogates such as organoids or animal
models only partially capture human physiology.

Navigating Complexity: Strategies for V
irtual Organ Construction

Addressing these challenges requires both computational an
d conceptual innovation. Large Al models, such as transform
er architectures and diffusion models, have demonstrated re
markable ability to generalize across domains, but biomedica
| data are sparser and noisier than the internet-scale corpora
that fuel general-purpose Al'%12, Thus, biological priors--sign
aling networks, gene ontologies, and spatial neighborhood ¢
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onstraints--must be embedded into these models to ensure t
hat their predictions are interpretable and physiologically me
aningful.

Multi-modal data fusion is another pillar. Single-cell RNA seq
uencing, ATAC-seq, proteomics, metabolomics, and imaging
each capture different layers of biology; integrating them int
o a shared embedding space allows for richer reconstruction
s3. Graph neural networks and hybrid mechanistic—statistical
approaches are particularly promising in linking cellular mole
cular states with organ-level emergent behaviors, such as car
diac conduction or hepatic metabolism?4.

A particularly powerful translational application is the conce
pt of digital twins'>'7. While virtual cells serve as the atomic
units of biological simulation, digital twins extend these mod
els into organ- or patient-specific replicas. For instance, digit
al twins of the heart are being developed that integrate elect
rophysiological models with patient-specific ECG and imaging
data, allowing prediction of arrhythmia risk or drug-induced
cardiotoxicity. Similarly, digital twins of the liver may be used
to simulate drug metabolism and toxicity, integrating cellula
r transcriptomics with physiologically based pharmacokinetic
models. These frameworks embody the transition from rese
arch to clinic, offering in silico experimentation before interv
ention, and thus heralding a new era of precision medicine!®
20

To ensure reliability and adoption, collaborative validation fr
ameworks are essential. The Virtual Cell Challenge has alread
y demonstrated the catalytic role of community competition
s in benchmarking at the cellular scale?!. A logical extension i
s the creation of Virtual Organ Challenges, leveraging shared
reference datasets, organoid platforms, and organ-on-chip te
chnologies as intermediate validation systems?223, Such initia
tives would not only standardize metrics but also accelerate
cross-disciplinary innovation between computational scientis
ts, biologists, and clinicians (Figure 1).
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Toward a Virtual Human

Looking forward, the trajectory from virtual cells to virtual or
gans naturally extends toward a virtual human. While still as

pirational, the conceptual pipeline is clear: single-cell models
provide the foundational elements, organ-scale simulations ¢
onstitute the functional modules, and integration across mod
ules will eventually yield whole-body simulations. Such a syst
Qin et al.icell,Vol.2d1wen781(2025) 5 September 2025

em could transform drug development by enabling large-scal
e in silico trials, redefine preventive medicine through contin
uous monitoring and forecasting, and ultimately reshape our
understanding of health and disease.

In summary, virtual cells have demonstrated the transformat
ive potential of Al-driven biology, but scaling toward virtual o
rgans exposes the limits of current data, models, and validati
on paradigms. By embedding biological priors into large mod
els, integrating across modalities and scales, building digital t
wins for translational application, and fostering collaborative
validation, the field may successfully navigate these deep wa
ters. If achieved, the promise of virtual organs will redefine t
he landscape of biomedical research and clinical practice, bri
nging us closer to a future where medicine is not only person
alized but also computationally pre-visualized.
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